

DELAWARE'S 2008 GREENHOUSE GAS EMISSIONS INVENTORY

PREPARED BY:

DIVISION OF AIR QUALITY

AUGUST 2012

EXECUTIVE SUMMARY

This report was prepared by the Department of Natural Resources and Environmental Control (DNREC), Division of Air Quality (DAQ) for Delaware to present the findings of the 2008 Greenhouse Gas (GHG) emissions inventory. The inventory was prepared to account for GHG emissions and sinks¹ in the State of Delaware. The inventory includes Delaware GHG emissions from 1990 to 2008. In addition to emissions data, this report provides information on emission sources and activities, as well as inventory methods.

Delaware's anthropogenic² GHG emissions were developed using a set of generally accepted principles and guidelines as well as protocols for State GHG emissions inventories established by the U.S. Environmental Protection Agency (EPA) and International Organization for Standardization (ISO). The General Methodology and Assumptions section of this report describes the principles and general methods applied to this GHG inventory process. GHG emissions from Delaware's sources are presented in this report by using a common metric, carbon dioxide equivalents (CO₂e), which accounts for the relative contributions of each gas to global average radiative forcing on a Global Warming Potential (GWP) weighted basis. The emissions estimates in this report are represented in million metric tons of CO₂ equivalents (MmtCO₂e).

To develop the annual emissions of GHGs from Delaware for the period of 1990 to 2008, emissions estimations were performed by using the U.S.EPA's State Inventory Tool (SIT). The SIT consists of MSExcel® spread sheets, which facilitate the collection of activity data (Information on the extent to which human activity takes place)³ and emission factors (coefficients which quantify emissions or removal per unit activity)⁴ that are based on economic activities⁵ in Delaware.

SOURCES OF GHG EMISSIONS

¹ Sinks: Removal or sequestration of greenhouse gases from the atmosphere.

²The term "anthropogenic", in this context, refers to greenhouse gas emissions and removals that are a direct result of human activities or are the result of natural processes that have been affected by human activities (IPCC/UNEP/OECD/IEA 1997)

³ 2006 IPCC Guidelines for National Greenhouse Gas Inventories

⁴ 2006 IPCC Guidelines for National Greenhouse Gas Inventories

⁵ This includes fossil fuel combustion, industrial processes, agricultural activities and waste management

The 2008 GHG inventory estimated GHG emissions from various sources. Data collection was performed by characterizing the sources into four categories including energy related activities, non-energy related industrial processes, agricultural activities, land-use, land-use change & forestry (LULUCF) and waste management⁶. Each source category was subdivided based on economic activities, as well as methodologies for estimating emissions. In 2008, Delaware's gross⁷ GHG emission was equivalent to 18.88 million metric tons of carbon dioxide equivalents (MmtCO₂e). Also in 2008, net⁸ GHG emission was equivalent to 16.14 MmtCO₂e emitted. This was approximately a 21% decrease when compared to 1990 net emission of 20.55 MmtCO₂e. Delaware's gross GHG emission in 2008 made up approximately 0.3% of gross U.S GHG emissions (7,048 MmtCO₂e)⁹. Figure ES-1 provides the breakdown¹⁰ of the 2008 GHG emissions by Delaware source category.

As Figure ES-1 presents, GHG emissions from energy related activities in Delaware had the largest CO₂e contribution to gross GHG emissions with approximately 93%. This was followed by agricultural source categories with approximately 3%, non-energy related industrial process sources with approximately 3% and waste management sources with less than1% (approximately 0.58%).

FIGURE ES-1. 2008 DELAWARE CO2e EMISSIONS BY SOURCE CATEGORY

⁶ IPCC, 2006 Guidelines for National Greenhouse Gas Inventories, Vol. 1

⁷ Gross GHG emissions excluded metric tons of CO₂e removed from the atmosphere (sink)

⁸ The land-use category was a sink for the removal CO_2 . This produced negative CO_2 in the inventory results.

⁹U.S. EPA: 2012 Inventory of U.S. Greenhouse Gas Emissions and Sinks:1990 -2008

¹⁰ Figure 1 percentages are based on Delaware's gross emissions of 18.88 and not the net emissions of 16.14.

GROSS GHG EMISSION TREND

Delaware's gross GHG emissions trended down from 1990 to 2008 as shown in Figure ES-2. Gross GHG emissions decreased by approximately 8.8% from 1990 to 2008. Though fluctuations where observed in the emissions trend as Figure ES-2 show, overall GHG emission levels declined from 1990 to 2008 at the rate of 0.11 MmtCO_2 e per year.

There were many factors that contributed to the downward trend of Delaware's gross GHG emissions. Energy related activities¹¹ affected all sectors of Delaware's economy and was the largest contributor to GHG emissions. Fossil fuel combustion was the greatest driver of GHG emissions from energy related activities. As the overall amount of fossil fuel combusted declined from 1990 to 2008, GHG emissions from energy related activities also declined. This decline in GHG emissions from energy related activities was the greatest driver of reductions in GHG emissions between 1990 and 2008.

FIGURE ES-2. DELAWARE'S GROSS GHG EMISSION FROM 1990 TO 2008

¹¹ Energy related activities are activities that involve fossil fuel combustion for energy use.

Energy Related Activities

The GHG emission trends by source category in Figure ES-3 shows that emissions from the energy source category have the largest share in gross GHG emissions from 1990 to 2008. Energy related activities resulted in an average annual emission of 18.42 MmtCO₂e from 1990 to 2008. As shown in Table ES-1, GHG emissions from energy related activities decreased from 1990 to 2008 due to decreased fossil fuel consumption.

Agricultural Activities

The agricultural activities¹² were a distant second with respect to overall GHG emissions from 1990 to 2008. It had an average annual emission of 0.62 MmtCO₂e. GHG emissions from agricultural activities decreased slightly from 1990 to 2008 as presented by Table ES-1. This decrease was partly due Delaware's shrinking agricultural base as a result of land development, as well as improved agricultural practices that minimize emissions as well as increase carbon storage and sequestration.

Non-energy Related Activities

¹² Agricultural activities are activities that involve the cultivation of animals and plants for food.

Emissions from agricultural activities were followed by non-energy related industrial processes, which resulted in an average emission of 0.43 MmtCO₂e per year. Table ES-1 showed that GHG emissions from non-energy industrial process emissions increased emissions increased from 1990 to 2008. This increase was driven primarily by emissions from the consumption of substitutes of ozone depleting substances (ODS)¹³. Emissions from the consumption of ODS substitutes increased drastically by approximately 36,533% from 1990 to 2008, representing the largest emissions rate increase of any source category.

Waste management Activities¹⁴

Waste management had the least impact with an average emission of 0.31 MmtCO₂e per year. On the other hand, land use, land-use change and forestry (LULUCF) had an opposite impact on gross GHG emissions because it was a major sink for CO₂, removing an average amount of 1.50 MmtCO₂e per year from 1990 to 2008.

FIGURE ES-3. GHG EMISSIONS BY SOURCE CATEGORIES

¹³ Ozone depleting substances are gases that catalyzes the decomposition the ozone gas in the stratosphere

¹⁴ Waste management activities are activities include recycling, combustion for energy recovery, treatment (treatment includes treatment for destruction and waste stabilization), and release, including disposal

Table ES-1 provides a list of categories and sub-categories of sources with corresponding emissions estimates based on CO₂e. In 2008, energy related activities emitted 17.61 MmtCO₂e into the atmosphere. This was followed by industrial processes with 0.60 MmtCO₂e, agricultural activities with 0.56 MmtCO₂e and waste management with 0.11 MmtCO₂e. LULUCF removed 2.74 MmtCO₂e from the atmosphere.

TABLE ES-1. GHG EMISSION ESTIMATES BY SOURCE CATEGORY						
Source Categories	1990	1995	2000	2005	2008	
Energy Related Activities	19.08	18.64	17.94	18.90	17.61	
CO ₂ from Fossil Fuel Combustion	18.78	18.30	17.62	18.66	17.43	
Stationary Combustion	0.06	0.06	0.06	0.06	0.06	
Mobile Combustion	0.24	0.28	0.27	0.19	0.12	
Industrial Processes	0.29	0.36	0.45	0.53	0.60	
Agriculture Activities	0.62	0.61	0.67	0.57	0.56	
Enteric Fermentation	0.05	0.05	0.05	0.04	0.04	
Manure Management	0.18	0.21	0.20	0.19	0.19	

TABLE ES-1. GHG EMISSION ESTIMATES BY SOURCE CATEGORY					
Source Categories	1990	1995	2000	2005	2008
Agricultural Soil	0.38	0.35	0.42	0.33	0.32
Management					
Waste Management	0.73	0.73	0.46	0.12	0.11
Municipal Solid Waste	0.66	0.66	0.38	0.04	0.02
Wastewater	0.06	0.07	0.08	0.08	0.09
LULUCF	(0.16)	(0.27)	(2.68)	(2.72)	(2.74)
Gross Emissions	20.71	20.34	19.52	20.12	18.88
Sinks	(0.16)	(0.27)	(2.68)	(2.72)	(2.74)
Net Emissions	20.55	20.07	16.84	17.40	16.14
Indirect CO ₂ from	0.00	0.00	6.26	6.74	6.55
Electricity Consumption					

NET GHG EMISSIONS TREND

In addition to estimating GHG emissions from various sources, DAQ also estimated the amount of GHGs in metric tons sequestered or removed from the atmosphere by sinks. The land-use, land-use change and forestry (LULUCF) category was identified as a sink. LULUCF mitigates the atmospheric build-up of GHGs by removing CO_2 from the atmosphere and then storing it in forest at a rate greater than emission back to the atmosphere through human and natural disturbances. The GHG emissions removed as a result of LULUCF from 1990 to 2008 were subtracted from gross GHG emissions to obtain net GHG emissions as presented in Figure ES-4.

FIGURE ES-4. NET GHG EMISSION FROM DELAWARE

Table ES-1 shows that net GHG emissions decreased from 20.55 MmtCO₂e in 1990 to 16.14 MmtCO₂e in 2008. This was a decrease of approximately 21%. The overall decrease in net GHG emissions was at the rate of 0.30 MmtCO_2 e per year.

According to Table ES-1, indirect CO_2 emission from electricity consumption resulted in the emission of 6.55 MmtCO₂e. Indirect CO_2 emission is CO_2 emission that is estimated based on the amount of kilowatt-hour consumed by end-users of electricity. Estimates of indirect CO_2 emissions do not include electricity generated from fossil combustion. Indirect CO_2 estimates were included in the 2008 GHG inventory to show how electricity demand in Delaware impacts CO_2 emissions. Indirect CO_2 emissions were estimated from 2000 to 2008 because the available data was limited to those years. Direct CO_2 emissions from electricity generation were separated from indirect CO_2 emissions to avoid the double counting of emissions estimates. According to the 2008 GHG inventory, overall indirect CO_2 emissions increased as electricity demands increased from 2000 to 2008.

GHG EMISSIONS BY GAS

The 2008 GHG inventory estimated emissions for the six Kyoto GHGs. They include carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF₆).

FIGURE ES-5. 2008 DELAWARE'S GHG EMISSIONS BY GAS

Figure ES-5 provides the percent breakdown for each GHG emitted in 2008. According to Figure ES-5, CO₂ emission represented the largest share of gross GHG emissions in 2008 with approximately 93% of the emissions. N₂O emission was a distant second representing only 4% of gross emissions. The combined emission of SF_{6} , HFC and PFC represented 2% of gross emissions, while CH₄ emission represented 1% in 2008.

Carbon Dioxide: The emission of CO_2 was driven by fossil fuel combustion in all sectors of Delaware's economy. As Table ES-2 provides CO_2 emissions in Delaware decreased slightly by approximately 8% from 1990 to 2008.

Methane: Based on estimates provided by Table ES-2, CH_4 emissions decreased drastically by approximately 64% from 1990 to 2008. This decrease in CH_4 emissions was driven by landfill gas recovery activities that mitigate the impact of CH_4 emissions. These activities included flaring and landfill gas conversion to electricity.

Nitrous Oxide: Based on estimates provided by Table ES-2, N_2O emissions decreased gradually by approximately 16% from 1990 to 2008. This decrease in N_2O was driven by improved farming activities as well as Delaware shrinking agricultural base due to land use change.

Hydrofluorocarbons), *Perfluorocarbons and Sulfur hexafluoride*: The combined emission of HFC, PFC and SF₆ increased drastically by approximately 363% from 1990 to 2008. This increase was driven by the increasing consumption of ODS substitutes. Though there was a significant increase in the emission of ODS substitutes, its impact to Delaware's gross GHG emissions was minimal because it was approximately only 2 % of total GHG emissions.

TABLE ES-2. GHG EMISSION ESTIMATES BY GAS (MMTCO ₂ e)						
	1990	1995	2000	2005	2008	
Gross CO ₂	19.12	18.60	17.81	18.84	17.59	
Net ¹⁵ CO ₂	18.95	18.31	15.12	16.11	14.85	
CO ₂ from FFC	18.78	18.30	17.62	18.66	17.43	
Industrial Processes	0.20	0.20	0.19	0.18	0.16	
Waste	0.14	0.09	0	0	0	
LULUCF	(0.17)	(0.28)	(2.69)	(2.72)	(2.75)	
CH ₄	0.69	0.75	0.56	0.21	0.25	
Stationary Combustion	0.02	0.02	0.02	0.02	0.02	
Mobile Combustion	0.02	0.02	0.02	0.01	0.01	
Oil Refining	0.01	0.01	0.01	0.01	0.01	
Enteric Fermentation	0.05	0.05	0.05	0.04	0.04	
Manure Management	0.03	0.03	0.03	0.03	0.03	
MSW	0.52	0.56	0.38	0.04	0.02	
Wastewater Treatment	0.05	0.05	0.05	0.06	0.06	

¹⁵ Net CO₂ is determined by subtracting total CO₂ removed from the atmosphere by LULUCF (sink).

TABLE ES-2. GHG EMISSION ESTIMATES BY GAS (MMTCO ₂ e)						
	1990	1995	2000	2005	2008	
N ₂ O	0.82	0.86	0.90	0.74	0.68	
Stationary Combustion	0.04	0.04	0.04	0.04	0.04	
Mobile Combustion	0.21	0.26	0.25	0.18	0.11	
Manure Management	0.15	0.17	0.16	0.16	0.16	
Agricultural Soil Management	0.38	0.35	0.42	0.33	0.32	
Burning of Ag Crop Residue	0.00	0.00	0.00	0.00	0.00	
N ₂ O from Settlement Soils	0.01	0.01	0.01	0.01	0.01	
MSW	0.01	0.00	0	0	0	
Wastewater Treatment	0.02	0.02	0.02	0.02	0.03	
HFC, PFC, and SF ₆	0.08	0.15	0.26	0.34	0.37	
Industrial Processes	0.08	0.15	0.26	0.34	0.37	
Gross Emissions	20.71	20.34	19.52	20.12	18.88	
Sinks	(0.17)	(0.28)	(2.69)	(2.72)	(2.75)	
Net Emissions (Sources and	20.55	20.35	16.84	17.40	16.14	
Sinks)						
Indirect CO ₂ from Electricity	0	0	6.26	6.74	6.55	
Consumption						